Comparison of Optical Properties of Clear Aligners Before and After In-vivo Aging

BINU PUNNOOSE GOLD¹, SANGEETHA DURAISAMY², RAVI KANNAN³

BY-NC-ND

ABSTRACT

Dentistry Section

Introduction: There is a rising demand for clear aligners among orthodontic patients and after the expiry of invisalign patent many indigenous aligners have been introduced in several part of the globe including India. The major advantage of the aligners is its invisibility which is attributed to its unique optical properties. The optical properties vary between different aligners and any changes in the optical properties during the clinical use is an important factor to be considered.

Aim: To evaluate and compare the optical properties of three different types of indigenous clear orthodontic aligners before and after in-vivo aging.

Materials and Methods: A prospective clinical study was conducted in the Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India, from August to December 2021. Total 36 volunteers participated in the study and were divided into three study groups. In group A subjects had Clearbite aligners (JJ Orthodontics Pvt. Ltd, Thrissur, Kerala), group B had Dentcare clear aligners (Dent Care Dental Lab Pvt. Ltd. Ernakulum, Kerala) and group C had Smile aligners (smile aligners Inc. Mumbai, Maharashtra). Polyvinyl siloxane impression of the maxillary arch was obtained and sent for the fabrication of two sets of clear aligners. One set of aligners were used to measure absorbance and transmittance before invivo aging and another set after an intraoral use of 14 days. The measurement of absorbance and transmittance were made at the wavelength range of 400-700 nm using a Shimadzu UV-3600i Plus UV-Vis-NIR spectrophotometer. Intergroup and intragroup comparisons were done using Independent sample t-test and One-way Analysis of Variance (ANOVA).

Results: In all the three groups of aligners evaluated, an increase in the absorbance values was noted at all the wavelengths after in-vivo aging but the increase was not statistically significant (p-value >0.05). Transmittance values of group A samples reduced after in-vivo aging but not significantly, whereas group B values reduced significantly between 400-440 nm (p-value <0.05) and group C values reduced significantly between 400-460 nm and 680-700 nm (p-value <0.05). Intergroup comparison of the mean absorbance and transmittance values of the group A, B and C samples before and after in-vivo aging showed no significant difference at all wavelengths (p-value >0.05).

Conclusion: The absorbance and transmittance values of all the three indigenous aligners did not change significantly after invivo aging at most of the evaluated wavelengths.

Keywords: Absorbance, Orthodontic aligners, Polyethylene terephthalate glycol, Polyurethane, Spectrophotometry, Transmittance

INTRODUCTION

Clear aligner therapy is an orthodontic treatment modality in which the patient wears a series of customised removable aligners that gradually moves the teeth to a desired position [1,2]. In the past few decades, there has been a substantial increase in the number of patients seeking clear aligner treatment because of its aesthetic superiority over labial orthodontics and improved comfort than lingual orthodontics [1-4]. Even though, labial and lingual orthodontic appliances provide better biomechanical advantage than clear aligners there has been an increasing trend in the practice of clear aligners across the globe as patients prefer the invisibility it provides [2,5].

Clear aligners offer several advantages including reduced incidence of white spot lesions, caries, gingivitis or periodontal disease compared to patients undergoing fixed orthodontic and are less cumbersome to the orthodontist with substantial reduction in chair side time and total number of visits [5,6].

The concept of using transparent tooth positioner was pioneered by Kesling HD, followed by clear retainers by Pontiz RJ, vacuum formed dental contour appliance by Nahoum HI and the Essix retainers by Sheridan J [5,7-9]. In 1997 Align Technology introduced Invisalign and since then it dominated the world market of clear aligners for two decades and was holding more than 40 patents [10,11]. The patents expired in October 2017. This marked a sudden influx of aligner companies across the globe including India [11].

The absorbance and the transmittance value of the clear aligners is mainly determined by the chemical composition of the materials used in the manufacturing of the aligner [12-14]. From an aesthetic point of view, the colour stability and transparency of orthodontic clear aligners are expected to be stable throughout the treatment [15]. The initial aligners systems used single layer of rigid polyurethane sheets for fabrication of clear aligners. Later Polyvinyl Chloride (PVC), Polyethylene Terephthalate Glycol (PET-G) and elastomer reinforced materials with superior aesthetic and mechanical properties were introduced [16-23]. Each manufacturer use one of these materials for the fabrication of clear aligners but the specific composition is mostly kept as a trade secret, hence the optical and mechanical properties of a clear aligner cannot be concluded based on the generic material used [12-23].

The mechanical properties of various clear aligners have been widely investigated with in-vitro and clinical studies [18,20,24-26]. Though, studies evaluating the optical properties of clear aligners are there in the literature, the studies were done only under laboratory conditions where exact oral environment including masticatory stress, varying oral temperature and pH could not be simulated and there are no published studies on the indigenous aligners manufactured in India [7,13,14,16,25].

Considering this lacunae in the existing literature the current study was designed to evaluate and compare the absorbance, transmittance and staining of three indigenous clear aligners; Clearbite aligners (JJ Orthodontics Pvt. Ltd, Thrissur, Kerala), Dentcare clear aligners (Dent

Care Dental Lab Pvt. Ltd. Ernakulum, Kerala), and Smile aligners, (smile aligners Inc. Mumbai, Maharashtra) after in-vivo aging. The result of this study will help us to determine the aesthetic stability of the three indigenous aligners and also it will help us to understand if these values of clear aligner is a prerequisite for the clear aligner selection.

MATERIALS AND METHODS

A prospective clinical study was conducted in the Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India, from August to December 2021. This study was approved by Institutional Review Board and Institutional Ethical Committee (SRMDC/IRB/2019/MDS/No.107). This clinical study is registered in clinical trial registry of India with a registration number CTRI/2021/08/035866.

Sample size calculation: The sample size was calculated using G Power software. The estimated sample size with power of 85% and α error of 0.05% was 36 with 12 in each group. The data for sample size determination was obtained from the study published by Lombardo L et al., in 2015 [7]. Convenience sampling technique was used, 36 volunteers who fulfilled the inclusion criteria and gave informed consent to participate in the study were selected.

Inclusion criteria: Subjects falling in the age group of 18-28 years with Decayed, Missing and Filled Teeth (DMFT) score not more than 2, plaque index not more than 2, without previous history of orthodontic treatment or bruxism were included in the study.

The 36 volunteers were divided into three groups of 12 each in order of their enrollment.

- **Group A (n=12):** Subjects received aligners from Clearbite (JJ Orthodontics Pvt.Ltd, Thrissur, Kerala).
- Group B (n=12): Subjects received aligners from Dentcare (Dent Care Dental Lab Pvt.Ltd. Ernakulam, Kerala).
- Group C (n=12): Subjects received aligners from Smile aligners (smile aligners Inc. Mumbai, Maharashtra).

Study Procedure

The maxillary impression of the 36 subjects belonging to three study groups were obtained with polyvinyl siloxane material and sent to the respective laboratories for the fabrication of clear aligners. Two sets of aligners with a thickness of 0.8 mm were fabricated from each impression for the clinical study [Table/Fig-1].

One set of aligners from each group were sent to the laboratory for measurement of absorbance and transmittance before in-vivo aging. The next set of aligners were delivered to the study subjects and were instructed to wear the aligners for 24 hours for 14 days except while brushing and eating and to clean the aligner with soft texture tooth brush under running water once in the morning and once at night. The aligners were retrieved at the end of 14 days and transported to the lab for measurement of absorbance and transmittance after in-vivo aging. The absorbance and transmittance were measured using a Shimadzu UV-3600i Plus UV-Vis-NIR spectrophotometer [Table/Fig-2]. The aligners were sectioned from canine to canine to remove the lingual portion by using a rotating saw before spectrophotometer analysis to expose the labial wall. The aligners were mounted on the holder and placed inside the spectrophotometer for the measurement [Table/Fig-3]. The absorbance and transmittance was measured in the wavelength of 400-700 nm, within the visible spectrum of light at intervals of 20 nm.

STATISTICAL ANALYSIS

Descriptive and Inferential statistics were analysed using Statistical Package for Social Sciences (SPSS) (IBM Corp. Released 2011. IBM SPSS Statistics for Windows Version 20.0. Armonk, NY:IBM Corp). Paired t-test was done for intra group readings and One-way Analysis of Variance (ANOVA) was used to compare the values among the groups.

RESULTS

In all the three groups of aligners evaluated an increase in the absorbance value was noted at all the wavelengths after in-vivo aging in patient's mouth for 14 days but the increase was not statistically significant (p-value >0.05) [Table/Fig-4-6]. The lowest absorbance value of 0.8873±0.006 was recorded in the group C samples at the wavelength of 420 nm and the highest of 1.000±0.000 was recorded in group B samples at 440 nm before aging. But one-way ANOVA comparing the mean absorbance of the samples belonging to the three experimental groups at all wavelengths measured before In-vivo aging showed no significant difference between the values obtained [Table/Fig-7].

The lowest absorbance value of 1.0270±.235 was recorded in the group B samples at the wavelength of 660 nm and the highest of 1.85±0.543 was recorded in group C samples at 440 nm after aging. But an one-way ANOVA comparing the mean absorbance of the group A, B and C samples after in-vivo aging showed no significant difference between the values obtained at all wavelengths [Table/Fig-8].

Transmittance values of group A samples reduced after 14 days of intraoral use but the difference was not statistically significant [Table/Fig-9]. The transmittance values of group B reduced significant [Table/Fig-10]. In group C, the reduction was significant only at wavelengths between 400-460 nm and 680-700 nm [Table/Fig-11]. The lowest transmittance value of 8.7627 ± 0.032 was recorded in the group A samples at the wavelength of 620 nm and the highest of 11.9787 ± 1.64587 was recorded in group C samples at 420 nm before aging.

The lowest transmittance value of 5.2017 ± 1.56050 was recorded in the group B samples at the wavelength of 420 nm and the highest of 9.5747 ± 5.23260 was recorded in group A samples at 420 nm after aging. The mean transmittance values of the samples from the group A, B and C before aging and after aging were compared using oneway ANOVA test. The comparison did not reveal a significant difference between the mean values at all wavelengths [Table/Fig-12,13].

[Table/Fig-1]: Clear aligners fabricated from the maxillary impressions of the subjects belonging to the three study groups. (Group A-Clearbite aligners, Group B-Dentcare aligners, Group C-Smile aligners). [Table/Fig-2]: Shimadzu UV-3600i Plus UV-Vis-NIR spectrophotometer. [Table/Fig-3]: Clear aligner positioned in the holder of the spectrophotometer after sectioning from canine to canine. (Images from left to right)

Wavelength ((nm)	Mean	Standard deviation	p-value
400	Pretreatment	0.9557	0.05947	0.055
400	Post-treatment	1.1920	0.02828	0.055
100	Pretreatment	0.9250	0.06239	0.007
420	Post-treatment	1.1835	0.02899	0.087
110	Pretreatment	0.9300	0.06075	
440	Post-treatment	1.1640	0.01980	0.081
100	Pretreatment	0.9327	0.05573	
460	Post-treatment	1.1330	0.00566	0.076
100	Pretreatment	0.8977	0.00929	
480	Post-treatment	1.0990	0.01697	0.007
500	Pretreatment	0.9027	0.01106	0.27
500	Post-treatment	1.0880	0.02546	
	Pretreatment	0.9090	0.00872	
520	Post-treatment	1.0835	0.02333	0.23
	Pretreatment	0.9117	0.00850	- 0.20
540	Post-treatment	1.0830	0.02121	
	Pretreatment	0.9140	0.00872	0.9140
560	Post-treatment	1.0865	0.01626	
500	Pretreatment	0.9147	0.00473	0.05
580	Post-treatment	1.0795	0.01344	0.25
	Pretreatment	0.9177	0.00833	
600	Post-treatment	1.0900	0.00990	0.16
	Pretreatment	0.9243	0.00551	
620	Post-treatment	1.0885	0.00778	0.13
	Pretreatment	0.9253	0.00462	
640	Post-treatment	1.0895	0.00495	0.10
000	Pretreatment	0.9213	0.00907	0.000
660	Post-treatment	1.0935	0.00071	0.036
000	Pretreatment	0.9257	0.00115	0.010
680	Post-treatment	1.0905	0.00071	0.049
700	Pretreatment	0.9267	0.00153	0.070
700	Post-treatment	1.0880	0.00141	0.073
[Table/Fig_4]	Paired t-test for co	mnarison of al	osorbance values before ('nretreatment'

[1able/Fig-4]: Paired t-test for comparison of absorbance values before (prefreatment) and after (post-treatment) in-vivo aging at various wavelengths in group A samples.

Wavele	ngth (nm)	Mean	Standard deviation	p-value
400	Pretreatment	0.9867	0.00577	0.054
400	Post-treatment	1.2900	0.12701	0.054
420	Pretreatment	0.9980	0.00173	0.06
420	Post-treatment	1.2970	0.13253	0.06
440	Pretreatment	1.0000	0.00000	0.079
440	Post-treatment	1.2867	0.14800	0.079
460	Pretreatment	0.9980	0.00173	0.11
400	Post-treatment	1.2560	0.16233	0.11
480	Pretreatment	0.9947	0.00462	0.15
460	Post-treatment	1.1663	0.10772	0.15
500	Pretreatment	0.9987	0.00115	0.51
500	Post-treatment	1.0720	0.16479	0.51
520	Pretreatment	0.9993	0.00058	0.78
520	Post-treatment	1.0377	0.21515	0.78
540	Pretreatment	0.9967	0.00577	0.81
540	Post-treatment	1.0330	0.22498	0.81
560	Pretreatment	0.9987	0.00115	0.82
Udc	Post-treatment	1.0317	0.22861	0.82
580	Pretreatment	0.9967	0.00289	0.83
000	Post-treatment	1.0280	0.23122	0.83

600	Pretreatment	0.9987	0.00115	0.00
000	Post-treatment	1.0317	0.23317	0.82
620	Pretreatment	0.9973	0.00231	0.82
020	Post-treatment	1.0310	0.23378	0.02
640	Pretreatment	0.9967	0.00289	0.82
640	Post-treatment	1.0300	0.23564	0.02
660	Pretreatment	0.9900	0.00866	0.80
000	Post-treatment	1.0270	0.23508	0.00
680	Pretreatment	0.9907	0.00808	0.80
000	Post-treatment	1.0287	0.23847	0.00
700	Pretreatment	0.9920	0.00693	0.80
	Post-treatment	1.0273	0.24154	0.60

[Table/Fig-5]: Paired t-test for comparison of absorbance values before and after in-vivo aging in group B samples (Dentcare aligners). p-value <0.05 was considered as statistically significant

Wavelength (r	Navelength (nm)		Standard deviation	p-value
400	Pretreatment	0.8880	0.00173	0.88
400	Post-treatment	1.8453	0.52806	0.00
420	Pretreatment	0.8873	0.00635	0.09
420	Post-treatment	1.8547	0.53459	0.00
440	Pretreatment	0.8953	0.00635	0.095
440	Post-treatment	1.8500	0.54308	0.095
460	Pretreatment	0.9047	0.00462	0.007
400	Post-treatment	1.8327	0.54444	0.097
400	Pretreatment	0.9060	0.00346	0.10
480	Post-treatment	1.8027	0.56443	0.10
500	Pretreatment	0.9120	0.00173	0.40
500	Post-treatment	1.7727	0.58776	0.12
500	Pretreatment	0.9133	0.00289	0.13
520	Post-treatment	1.7647	0.59772	
540	Pretreatment	0.9187	0.00115	0.133
540	Post-treatment	1.7663	0.59785	
500	Pretreatment	0.9233	0.00577	- 0.13
560	Post-treatment	1.7710	0.60353	
500	Pretreatment	0.9140	0.00520	
580	Post-treatment	1.7707	0.59098	0.12
	Pretreatment	0.9280	0.00173	0.1.1
600	Post-treatment	1.7770	0.61960	0.14
	Pretreatment	0.9287	0.00115	
620	Post-treatment	1.7790	0.61960	0.14
	Pretreatment	0.9287	0.00115	
640	Post-treatment	1.7810	0.61863	0.13
	Pretreatment	0.9267	0.00289	0.17
660	Post-treatment	1.7807	0.61553	0.17
000	Pretreatment	0.9267	0.00289	0.10
680	Post-treatment	1.7863	0.61723	0.13
700	Pretreatment	0.9280	0.00173	0.40
700	Post-treatment	1.7867	0.61417	0.13
[Table/Fig-6]: Paired t-test for comparison of absorbance values before and after in-vivo aging in group C samples (Smile aligners). p-value <0.05 was considered as statistically significant				

DISCUSSION

The current study demonstrated no significant difference in the optical properties of the three aligners evaluated before and after in-vivo aging for 14 days as measured by absorbance and transmittance values. They exhibited similar optical properties after in-vivo aging though there was a trend of increased absorbance and reduced transmittance noted in all the three aligners.

				95% Cor Interval f		
Waveler	igth (nm)	Mean	Standard deviation	Lower bound	Upper bound	p-value
	А	0.9557	0.05947	0.8079	1.1034	
	В	0.9867	0.00577	0.9723	1.0010	
400	С	0.8880	0.00173	0.8837	0.8923	0.28
	Total	0.9434	0.05294	0.9028	0.9841	
	А	0.9250	0.06239	0.7700	1.0800	
	В	0.9980	0.00173	0.9937	1.0023	-
420	С	0.8873	0.00635	0.8716	0.9031	0.28
	Total	0.9368	0.05795	0.8922	0.9813	
	A	0.9300	0.06075	0.7791	1.0809	
	В					-
440		1.0000	0.00000	1.0000	1.0000	0.22
	C	0.8953	0.00635	0.8796	0.9111	-
	Total	0.9418	0.05536	0.8992	0.9843	
	A	0.9327	0.05573	0.7942	1.0711	-
460	В	0.9980	0.00173	0.9937	1.0023	0.08
	С	0.9047	0.00462	0.8932	0.9161	
	Total	0.9451	0.05003	0.9067	0.9836	
	А	0.8977	0.00929	0.8746	0.9207	
400	В	0.9947	0.00462	0.9832	1.0061	0.070
480	С	0.9060	0.00346	0.8974	0.9146	- 0.079
	Total	0.9328	0.04688	0.8967	0.9688	
	А	0.9027	0.01106	0.8752	0.9301	
500	В	0.9987	0.00115	0.9958	1.0 015	0.082
	C 0.	0.9120	0.00173	0.9077	0.9163	
	Total	0.9378	0.04619	0.9023	0.9733	
	А	0.9090	0.00872	0.8873	0.9307	_
520	В	0.9993	0.00058	0.9979	1.0008	0.086
020	С	0.9133	0.00289	0.9062	0.9205	0.000
	Total	0.9406	0.04436	0.9065	0.9747	
	А	0.9117	0.00850	0.8905	0.9328	_
540	В	0.9967	0.00577	0.9823	1.0110	0.087
0.10	С	0.9187	0.00115	0.9158	0.9215	0.000
	Total	0.9423	0.04119	0.9107	0.9740	
	А	0.9140	0.00872	0.8923	0.9357	_
560	В	0.9987	0.00115	0.9958	1.0015	0.085
	С	0.9233	0.00577	0.9090	0.9377	_
	Total	0.9453	.04055	0.9142	0.9765	
	A	0.9147	0.00473	0.9029	0.9264	_
580	В	0.9967	0.00289	0.9895	1.0038	0.09
	С	0.9140	0.00520	0.9011	0.9269	_
	Total	0.9418	0.04134	0.9100	0.9736	
	A	0.9177	0.00833	0.8970	0.9384	0.088
600	В	0.9987	0.00115	0.9958	1.0015	_
	С	0.9280	0.00173	0.9237	0.9323	-
	Total	0.9481	0.03842	00.9186	0.9776	0.085
	A	0.9243	0.00551	0.9107	0.9380	
620	В	0.9973	0.00231	0.9916	1.0031	
	С	0.9287	0.00115	0.9258	0.9315	
	Total	0.9501	0.03560	0.9227	0.9775	
	A	0.9253	0.00462	0.9139	0.9368	-
640	В	0.9967	0.00289	0.9895	1.0038	0.087
	С	0.9287	0.00115	0.9258	0.9315	4
	Total	0.9502	0.03497	0.9233	0.9771	

	А	0.9213	0.00907	0.8988	0.9439	
660	В	0.9900	0.00866	0.9685	1.0115	0.00
	С	0.9267	0.00289	0.9195	0.9338	0.28
	Total	0.9460	0.03370	0.9201	0.9719	
	А	0.9257	0.00115	0.9228	0.9285	
680	В	0.9907	0.00808	0.9706	1.0107	0.28
680	С	0.9267	0.00289	0.9195	0.9338	
	Total	0.9477	0.03254	0.9227	0.9727	
	А	0.9267	0.00153	0.9229	0.9305	
700	В	0.9920	0.00693	0.9748	1.0092	0.28
700	С	0.9280	0.00173	0.9237	0.9323	
	Total	0.9489	0.03254	0.9239	0.9739	
[Table/Fig			for comparis	on of absorba	nce values be	etween

group A, B and C before aging. p-value <0.05 was considered as statistically significant

The properties of the aligners are hugely dependent on the chemical composition, thickness of the material used and the manufacturing

Wavelengt	th (nm)	Mean	Standard deviation	p-value
400	A	1.1920	0.02828	
	В	1.2900	0.12701	0.30
	С	1.8453	0.52806	
420	A	1.1835	0.02899	
	В	1.2970	70 0.13253 0.	0.28
	С	1.8547	0.53459	
440	А	1.1640	0.01980	
	В	1.2867	0.14800	0.27
	С	1.8500	0.54308	
460	A	1.1330	0.00566	
	В	1.2560	0.16233	0.28
	С	1.8327	0.54444	
480	A	1.0990	0.01697	
	В	1.1663	0.10772	0.28
	С	1.8027	0.56443	
500	А	1.0880	0.02546	
	В	1.0720	0.16479	0.22
	С	1.7727	0.58776	
520	A	1.0835	0.02333	
	В	1.0377	0.21515	0.08
	С	1.7647	0.59772	
540	A	1.0830	0.02121	
	В	1.0330	0.22498	0.079
	С	1.7663	0.59785	
560	A	1.0865	0.01626	
	В	1.0317	0.22861	0.082
	С	1.7710	0.60353	
580	А	1.0795	0.01344	
	В	1.0280	0.23122	0.086
	С	1.7707	0.59098	
600	А	1.0900	0.00990	
	В	1.0317	0.23317	0.087
	С	1.7770	0.61960	
620	A	1.0885	0.00778	
	В	1.0310	0.23378	0.085
	C	1.7790	0.61960	
640	A	1.0895	0.00495	
-	В	1.0300	0.23564	0.09
	C	1.7810	0.61863	

	А	1.0935	0.00071			
660	В	1.0270	0.23508	0.088		
	С	1.7807	0.61553			
	A	1.0905	0.00071			
680	В	1.0287	0.23847	0.085		
	С	1.7863	0.61723			
	А	1.0880	0.00141			
700	В	1.0876	0.55240	0.087		
	С	1.7867	0.61417			
[Table/Fig-	B]: One-way ANO	[Table/Fig-8]: One-way ANOVA for comparison of absorbance values between				

the group A, group B and group C at various wavelengths after in-vivo aging. p-value <0.05 was considered as statistically significant

Wavelength	i (nm)	Mean	Standard deviation	p-value
100	Pretreatment	9.9720	0.02425	0.00
400	Post-treatment	9.5523	5.40749	0.90
100	Pretreatment	9.9033	0.08372	0.00
420	Post-treatment	9.5747	5.23260	0.92
4.40	Pretreatment	9.7593	0.20842	
440	Post-treatment	8.7283	4.97133	0.99
100	Pretreatment	9.5033	0.00289	
460	Post-treatment	8.0253	4.60655	0.86
100	Pretreatment	9.4340	0.05716	0.70
480	Post-treatment	8.3760	4.18680	0.73
500	Pretreatment	9.2400	0.05196	0.64
500	Post-treatment	8.5403	4.11326	
500	Pretreatment	9.0947	0.08198	0.50
520	Post-treatment	8.5910	4.05945	0.58
5.40	Pretreatment	9.0513	0.04446	0.57
540	Post-treatment	85670	3.99390	
500	Pretreatment	8.9900	0.00866	0.57
560	Post-treatment	8.5190	4.02489	0.57
580	Pretreatment	9.1487	0.04446	0.00
260	Post-treatment	84823	3.73066	0.60
600	Pretreatment	8.8533	0.12702	0.50
600	Post-treatment	8.4800	4.06286	0.56
600	Pretreatment	8.7627	0.03233	0.50
620	Post-treatment	8.4660	3.99707	0.53
640	Pretreatment	8.7760	0.02078	0.54
640	Post-treatment	7.4350	3.97223	0.54
660	Pretreatment	8.7773	0.01963	0.50
660	Post-treatment	8.3260	3.91358	0.56
680	Pretreatment	8.7967	0.00289	0.55
000	Post-treatment	7.3363	3.82669	0.55
700	Pretreatment	8.8040	0.00346	0 55
700	Post-treatment	7.3583	3.80245	0.55

[Table/Fig-9]: Paired t-test for comparison of transmittance values before and after in-vivo aging at various wavelengths in group A samples (Clearbite aligners). p-value <0.05 was considered as statistically significant

Wavelength (nm)		Mean	Standard deviation	p-value
400 —	Pretreatment	10.0887	0.22632	0.021
	Post-treatment	5.2740	1.52255	0.031
400	Pretreatment	10.0533	0.04619	0.033
420 -	Post-treatment	5.2017	1.56050	
440	Pretreatment	10.0073	0.00635	0.047
440	Post-treatment	5.3750	1.81128	0.047
460	Pretreatment	10.0520	0.04503	0.078
	Post-treatment	5.8130	2.18223	

Journal of Clinical and Diagnostic Research. 2022 Oct, Vol-16(10): ZC17	'-ZC24
---	--------

Binu Punnoose Gold et al., In-vivo Aging on Optical Properties of Clear Aligners

490	Pretreatment	10.1300	0.11258	0.00
480	Post-treatment	6.9653	1.81694	0.09
500	Pretreatment	10.0253	0.02194	0.59
500	Post-treatment	8.8700	3.14745	0.58
520	Pretreatment	10.0147	0.01270	0.96
520	Post-treatment	9.9357	4.84226	0.96
540	Pretreatment	9.9993	0.00058	0.9
540	Post-treatment	9.1363	5.22493	0.9
500	Pretreatment	10.0367	0.03175	0.9
560	Post-treatment	9.1940	5.33240	
500	Pretreatment	10.0813	0.07044	0.07
580	Post-treatment	9.3043	5.47558	0.97
000	Pretreatment	10.0273	0.02367	0.98
600	Post-treatment	9.2327	5.47064	
620	Pretreatment	10.0547	0.04734	0.89
020	Post-treatment	9.2530	5.50170	0.89
640	Pretreatment	10.0847	0.07332	0.07
640	Post-treatment	92913	5.56163	0.97
660	Pretreatment	10.2280	0.19745	0.95
000	Post-treatment	9.3547	5.56445	0.95
690	Pretreatment	10.2113	0.18302	0.05
680	Post-treatment	9.3453	5.62977	0.95
700	Pretreatment	10.1813	0.15704	0.05
700	Post-treatment	9.3980	5.72559	0.95

[Table/Fig-10]: Paired t-test for comparison of transmittance values before and after in-vivo aging at various wavelengths in group B samples (Dentcare aligners). p-value <0.05 was considered as statistically significant

Wavel	ength (nm)	Mean	Standard deviation	p-value	
400	Pretreatment	10.0490	0.15762	0.015	
400	Post-treatment	5.4937	1.60502		
420	Pretreatment	11.9787	1.64587	0.012	
	Post-treatment	5.4107	1.47947	0.012	
440	Pretreatment	11.8790	1.62851	0.014	
	Post-treatment	5.6547	1.61682	0.014	
460	Pretreatment	reatment 11.6663 1.37687		0.000	
400	Post-treatment	6.1140	1.96293	0.032	
480	Pretreatment	11.6903	1.29555	0.065	
460	Post-treatment	6.9300	2.52884	0.065	
500	Pretreatment	11.5550	1.31661	0.071	
500	Post-treatment	7.3810	2.48929	0.071	
520	Pretreatment	11.4597	1.24524	0.071	
520	Post-treatment	7.4337	2.33286	0.071	
540	Pretreatment	11.3270	1.15368	0.071	
540	Post-treatment	7.3340	2.21781	0.071	
560	Pretreatment	11.3220	1.09866	0.070	
000	Post-treatment	7.3090	2.20924	0.072	
500	Pretreatment	11.5550	1.31661	0.50	
580	Post-treatment	7.0933	1.96301	0.56	
000	Pretreatment	11.2547	1.05177	0.04	
600	Post-treatment	7.3107	2.13067	0.64	
600	Pretreatment	11.2603	1.02172	0.59	
620	Post-treatment	7.2517	2.05785	0.58	
640	Pretreatment	11.2733	0.99419	0.55	
640	Post-treatment	7.2083	2.01459	0.55	
660	Pretreatment	11.3770	0.89635	0.50	
660	Post-treatment	7.1510	2.02737	0.56	

Binu Punnoose Gold et al., In-vivo Aging on Optical Properties of Clear Aligners

680	Pretreatment	11.3663	0.90879	0.049			
000	Post-treatment	7.0960	1.92393	0.049			
700	Pretreatment	11.3333	0.91985	0.047			
700	Post-treatment	7.0940	1.89514				
[Table/Fig-11]: Paired t-test for comparison of transmittance values before and after in-vivo aging at various wavelengths in group C samples (Smile aligners). p-value <0.05 was considered as statistically significant							

process [7,12,15]. Amorphous polymers like polyurethane, PET-G, polyvinylchloride and polysulfone exhibit high translucency and preferred as aligner materials over crystalline polymers which are highly opaque and unaesthetic [12,15,24,26,27]. All the aligners

Wavelength (nm)			Standard		nfidence for Mean	р-	
		Mean	deviation	Lower bound	Upper bound	value	
400	А	9.9720	0.02425	9.9118	10.0322		
	В	10.0887	0.22632	9.5265	10.6509		
	С	10.0490	0.15762	9.6575	10.4405	0.12	
	Total	10.0366	0.14766	9.9231	10.1501	1	
	А	9.9033	0.08372	9.6954	10.1113	0.00	
100	В	10.0533	0.04619	9.9386	10.1681		
420	С	11.9787	1.64587	7.8901	16.0672	0.23	
	Total	10.6451	1.29771	9.6476	11.6426		
	А	9.7593	0.20842	9.2416	10.2771		
4.40	В	10.0073	0.00635	9.9916	10.0231	0.05	
440	С	11.8790	1.62851	7.8336	15.9244	0.35	
	Total	10.5486	1.29657	9.5519	11.5452	1	
	А	9.5033	0.00289	9.4962	9.5105		
400	В	10.0520	0.04503	9.9401	10.1639		
460	С	11.6663	1.37687	8.2460	15.0867	0.46	
	Total	10.4072	1.19275	9.4904	11.3241	1	
	А	9.4340	0.05716	9.2920	9.5760		
	В	10.1300	0.11258	9.8503	10.4097		
480	С	11.6903	1.29555	8.4720	14.9087	0.29	
	Total	10.4181	1.19368	9.5006	11.3357	1	
	А	9.2400	0.05196	9.1109	9.3691	0.21	
500	В	10.0393	0.04002	9.9399	10.1387		
	С	11.5550	1.31661	8.2844	14.8256		
	Total	10.2781	1.21300	9.3457	11.2105		
	А	9.0947	0.08198	8.8910	9.2983		
	В	10.0173	0.01553	9.9787	10.0559		
520	С	11.4597	1.24524	8.3663	14.5530	0.28	
	Total	10.1906	1.20624	9.2634	11.1178	1	
	А	9.0513	0.04446	8.9409	9.1618		
- 10	В	9.9993	0.00058	9.9979	10.0008		
540	С	11.3270	1.15368	8.4611	14.1929	0.28	
	Total	10.1259	1.14597	9.2450	11.0068	1	
	А	8.9900	0.00866	8.9685	9.0115		
	В	10.0183	0.03175	9.9395	10.0972		
560	С	11.3220	1.09866	8.5928	14.0512	0.22	
	Total	10.1101	1.15171	9.2248	10.9954	1	
	А	9.1487	0.04446	9.0382	9.2591		
	В	10.0440	0.06773	9.8757	10.2123		
580	С	11.4330	1.15090	8.5740	14.2920	0.08	
	Total	10.2086	1.15171	9.3233	11.0938	1	
	А	8.8533	0.12702	8.5378	9.1689		
	В	10.0273	0.02367	9.9685	10.0861		
600	С	11.2547	1.05177	8.6419	13.8674	0.079	
ŀ						1	

620	А	8.7627	0.03233	8.6824	8.8430	
	В	10.0547	0.04734	9.9371	10.1723	0.082
	С	11.2603	1.02172	8.7223	13.7984	0.082
	Total	10.0259	1.19664	9.1061	10.9457	
	А	8.7760	0.02078	8.7244	8.8276	
640	В	10.0490	0.06829	9.8794	10.2186	0.086
040	С	11.2733	0.99419	8.8036	13.7430	0.000
	Total	10.0328	1.19076	9.1175	10.9481	
	А	8.7773	0.01963	8.7286	8.8261	
660	В	10.2280	0.19745	9.7375	10.7185	0.007
000	С	11.3770	0.89635	9.1503	13.6037	0,087
	Total	10.1274	1.21802	9.1912	11.0637	
	А	8.7967	0.00289	8.7895	8.8038	
680	В	10.1423	0.16095	9.7425	10.5422	0.085
000	С	11.3663	0.90879	9.1088	13.6239	0.085
	Total	10.1018	1.20498	9.1755	11.0280	
	А	8.8040	0.00346	8.7954	8.8126	
700	В	10.1813	0.15704	9.7912	10.5714	0.079
	С	11.3333	0.91985	9.0483	13.6184	0.079
	Total	10.1062	1.19181	9.1901	11.0223	
[Table/Fig-12]: One-way ANOVA for comparison of transmittance values among group A, B and C before in-vivo aging. p-value <0.05 was considered as statistically significant						

are not created equal, and those currently on the market differ in terms of their material, thickness and manufacturing process. Alexandropoulos A et al., evaluated the chemical and mechanical properties of three contemporary thermoplastic orthodontic materials (polyurethane, polyester and polyethylene glycol terephthalate) and

Wavelength (nm)		Mean	Standard deviation	p-value
	А	9.5523	5.40749	
400	В	5.2740	1.52255	0.23
	С	5.4937	1.60502	
	А	9.5747	5.23260	
420	В	5.2017	1.56050	0.23
	С	5.4107	1.47947	
	А	8.7283	4.97133	
440	В	5.3750	1.81128	0.25
	С	5.6547	1.61682	
	А	8.0253	4.60655	
460	В	5.8130	2.18223	0.26
	С	6.1140	1.96293	
	А	8.3760	4.18680	
480	В	6.9653	1.81694	0.28
	С	6.9300	2.52884	
	А	8.5403	4.11326	
500	В	8.8700	3.14745	0.36
	С	7.3810	2.48929	
	А	8.5910	4.05945	
520	В	9.9357	4.84226	0.432
	С	7.4337	2.33286	
	А	85670	3.99390	
540	В	9.1363	5.22493	0.46
	С	7.3340	2.21781	
	А	8.5190	4.02489	
560	В	9.1940	5.33240	0.49
	С	7.3090	2.20924	

	А	8.4823	3.73066		
580	В	9.3043	5.47558	0.51	
	С	7.0933	1.96301		
	А	8.4800	4.06286		
600	В	9.2327	5.47064	0.53	
	С	7.3107	2.13067		
	А	8.4660	3.99707		
620	В	9.2530	5.50170	0.55	
	С	7.2517	2.05785		
	А	7.4350	3.97223		
640	В	92913	5.56163	0.56	
	С	7.2083	2.01459		
	А	8.3260	3.91358		
660	В	9.3547	5.56445	0.59	
	С	7.1510	2.02737		
	А	7.3363	3.82669		
680	В	9.3453	5.62977	0.60	
	С	7.0960	1.92393		
	А	7.3583	3.80245		
700	В	9.3980	5.72559	0.60	
	С	7.0940	1.89514		
[Table/Fig-13]: One-way ANOVA for comparison of transmittance values between					

[Table/Fig-T3]: One-way ANOVA for comparison of transmittance values between the group A , group B and group C at various wavelengths after in-vivo aging. p-value <0.05 was considered as statistically significant

observed significant differences in their chemical structure and mechanical properties and therefore anticipated differences in their clinical behaviour [28].

Ideal mechanical properties and chemical stability is a basic requisite of clear aligners. The transparency of the aligner is the major key to their success and popularity [1,2,7,12-14,16-18]. Studies evaluating the optical properties of clear aligners are there in the literature but there are no published studies on the indigenous aligners manufactured in India [Table/Fig-14] [7,13,22,25,29].

Most aligner companies recommend a 14 days consecutive wear of appliance for a minimum of 22 hours per day. The transparency of orthodontic clear aligners should be stable during this period or else the aligners may become less aesthetically appealing during this time period which may be of a clinical concern [12,27]. Clear aligners are exposed to various masticatory stress, salivary enzymes, staining food and beverages, mouthwashes in the oral environment during their two weeks of continuous wear [11,13,22]. These variables are very difficult to simulate in an experimental setup and in-vitro protocols exaggerate the time of exposure of the aligners to the staining agents. Hence, in this study the optical properties of the aligners were evaluated after in-vivo aging for 14 days in patients mouth.

The absorbance and transmittance before and after in-vivo aging and in-vitro staining was measured using a Shimadzu 3600 plus UV-VIS-NIR spectrophotometer using the method recommended by Lombardo L et al., to expose the labial wall [7]. Absorbance is defined as a measure of the capacity of a substance to absorb light of a specified wavelength. Transmittance is the fraction of incident light, at an established wavelength that passes through the material. Greater the transmittance, the more transparent the material and greater the absorbance value, less transparent the material [7].

The result of the current study is in contradiction with the previous study conducted by Lambardo L et al., Liu CL et al., and Bernard G et al., who absorbed significant differences in their optical properties and colour stability of different clear aligner brands [7,25,29]. This may be due to the reason that these studies were conducted under in-vitro conditions where the aligners underwent prolonged exposure to the food stains which were greater than the average time to which the aligners are exposed to stains during intraoral use. Further, the aligners used in these studies differed in their chemical composition, thickness and the method of processing which may affect the optical properties to a great extent.

The clearbite aligners were made from Polyurethane and Polyethylene Terephthalate Glycol (PET-G) where Dentcare aligners and Smile aligners were fabricated from PET-G. Though, the composition of the aligner materials used to fabricate the three aligners evaluated

Author's name and year of publication	Place of study	Type of study	Sample size	Aligners compared	Parameters assessed	Conclusion
Bernard G et al., (2020) [29]	United States of America	In-vitro	100 per group	Invisalign [®] , Clear Correct [®] and Minor Tooth Movement [®] .	Colour changes in the aligners before immersion, after a 12 hrs exposure to instant coffee, red wine and black tea, after a 7 day exposure and after cleaning with Invisalign® cleaning crystals or the Cordless Sonic Cleaner combined with a Retainer Brite® tablet.	The Invisalign [®] aligners were more prone to pigmentation than the other two with coffee or red wine. Black tea caused more stains on all the three tested brands. Both cleansing methods performed similarly.
Gracco A et al., (2009) [22]	Italy	In-vivo	1 control 11 samples in study group	Invisalign®	Molecular change on the surface of appliance, colour and transparency, surface morphology and composition of surface deposits.	Intraoral conditions influence the optical properties and chemical stability of the aligners.
Zafeiriadis AA et al., (2018) [13]	Greece	In-vivo	30 15 in each group	Vivera® and Essix® C+ thermoplastic retainers	Colour stability of the retainers during intraoral use.	Used retainers exhibited greater colour change than control appliances or teeth only readings, and increased with the duration of use. Both retainers exhibited similar colour stability.
Lombardo L et al., (2015) [7]	Italy	In-vitro	9 samples in each groupm	Invisalign, All-in, f-22 aligner	Absorbance and transmittance before and after aging in-vitro at a constant temperature in artificial saliva supplemented with food colouring for two cycles of 14 days each.	Commercial aligners possess significantly different optical and therefore aesthetic, properties, both as delivered and following aging.
Liu CL et al., (2016) [25]	China	In-vitro	60 in each group	Invisalign, Angelalign and Smartee	Colour stability after staining with coffee.	The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties.
Present study, 2022	India	In-vivo	36, 12 in each group	Clearbite, Dentcare, Smile aligners	Absorbance and transmittance before and after intraoral aging for 14 days.	The optical properties of the three aligners evaluated did not significantly differ before and after in-vivo aging in patient's mouth for 14 days. The in-vivo aging does not alter the optical properties of the three aligners evaluated.

in the current study differed slightly. The thickness of the material (0.8 mm) and processing methods (thermoforming) were essentially same [30-32].

Gracco A et al., investigated the optical properties of clear aligners before and after intraoral use and noted that the intraoral conditions influence the optical properties and chemical stability of the aligners. [22]. A similar study conducted by Zafeiriadis AA et al., assessed the in-vivo colour alterations of two different clear retainers and observed that used retainers exhibited greater colour change and the colour change increased with time for both materials [13].

The fact that the current study did not demonstrate any such difference may be attributed to the huge improvement in the quality of materials available for aligner fabrication and better methods of aligner processing and finishing available in the current era.

Limitation(s)

This study did not include the dietary variables that affect the staining characteristics of the aligner material.

CONCLUSION(S)

The optical properties of the three aligners evaluated did not significantly differ among themselves as received from the manufactures and after in-vivo aging in patient's mouth for 14 days. The in-vivo aging does not alter the optical properties of the three aligners evaluated. Further in-vitro studies evaluating the staining characters or in-vivo studies including the dietary variables can be conducted for better understanding of the staining characteristics of these aligners.

REFERENCES

- Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop. 2009;135(3):276.e1-12.
- [2] Kohda N, lijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013;83(3):476-83.
- [3] Boyd RL, Miller RJ, Vlaskalic V. The Invisalign system in adult orthodontics: Mild crowding and space closure cases. J Clin Orthod. 2000;34(4):203-12.
- [4] Kim TW, Echarrri P. Clear aligner: An efficient, esthetic, and comfortable option for an adult patient. World J Orthod. 2007;8(1):13-18.
- [5] Kesling HD. The philosophy of the tooth positioning appliance. American J Orthod Oral Surg. 1945;31(6):297-304.
- [6] Lingenbrink JC, King G, Bollen AM, Hujoel P, Huang G, Orsini-Alcalde G. Quality of life comparison between clear removable and conventional orthodontics. Int J Dent Res. 2002;(81):463-66.
- [7] Lombardo L, Arreghini A, Maccarrone R, Bianchi A, Scalia S, Siciliani G. Optical properties of orthodontic aligners--spectrophotometry analysis of three types before and after aging. Prog Orthod. 2015;16:41.
- [8] Pontiz RJ. Invisible retainers. Am J Orthod. 1971;59(3):266-72.

- [9] Nahoum HI. The vacuum formed dental contour appliance. NY State Dent J. 1964;9(3):385-90.
- [10] Sheridan J, LeDoux W, McMinn R. Essix retainers: Fabrication and supervision for permanent retention. J Clin Orthod. 1993;27(1):37-45.
- [11] Hahn W, Engelke B, Jung K, Dathe H, Kramer FJ, Rödig T, et al. The influence of occlusal forces on force delivery properties of aligners during rotation of an upper central incisor. Angle Orthod. 2011;81(6):1057-63.
- [12] Gold BP, Siva S, Duraisamy S, Idaayath A, Kannan R. Properties of orthodontic clear aligner materials-A review. J Evol Med Dent Sci. 2021;10(37):3294-301.
- [13] Zafeiriadis AA, Karamouzos A, Athanasiou AE, Theodore E, Palaghias G. An in vivo spectrophotometric evaluation of Vivera and Essix clear thermoplastic retainer discolouration. Australasian Orthodontic Journal. 2018;34(1):03-10.
- [14] Ahn HW, Ha HR, Lim HN. Effects of aging procedures on the molecular, biochemical, morphological, and mechanical properties of vacuum-formed retainers. J Mech Behav Biomed Mater. 2015;51:356-66.
- [15] Barone S, Paoli A, Paolo NE, Razionale AV, Giannese M. Mechanical and Geometrical properties assessment of thermoplastic materials for biomedical application. Mater Sci. 2017;4(3):437-46.
- [16] Ercoli F, Tepedino M, Parziale V, Luzi C. A comparative study of two different clear aligner systems. Prog Orthod. 2014;15(1):01-05.
- [17] Kravitz ND, Kusnoto B, BeGole E, Obrez A, Agran B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am J Orthod Dentofacial Orthop. 2009;135(1):27-35.
- [18] Zhang N, Bai Y, Ding X, Zhang Y. Preparation and characterization of thermoplastic materials for invisible orthodontics. Dent Mater J. 2011;30(6):954-59.
- [19] Align Technology Inc. The Invisalign reference guide. Santa Clara: Invisalign. 2002;12(3):45-50.
- [20] Wong BH. Invisalign A to Z. Am J Orthod Dentofacial Orthop. 2002;121(5):540-41.
- [21] Eliades T, Eliades G, Watts DC. Structural conformation of in vitro and in vivo aged orthodontic elastomeric modules. Eur J Orthod. 1999;21(6):649-58.
- [22] Gracco A, Mazzoli A, Favoni O, Conti C, Ferraris P, Tosi G, et al. Short-term chemical and physical changes in invisalign appliances. Aust Orthod J. 2009;25(1):34-40.
- [23] Huget EF, Patrick KS, Nunez LJ. Observations on the elastic behavior of a synthetic orthodontic elastomer. J Dent Res. 1990;69(2):496-501.
- [24] Fang D, Zhang N, Chen H, Bai Y. Dynamic stress relaxation of orthodontic thermoplastic materials in a simulated oral environment. Dent Mater J. 2013;32(6):946-51.
- [25] Liu CL, Sun WT, Liao W, Lu WX, Li QW, Jeong Y, et al. Colour stabilities of three types of orthodontic clear aligners exposed to staining agents. Int J Oral Sci. 2016;8(4):246-53.
- [26] Hennessy J, Al-Awadhi EA. Clear aligners generations and orthodontic tooth movement. J Orthodontics. 2016;43(1):68-76.
- [27] Nishiyama M, Kamada K, Horiuchi S. A new construction of tooth positioner by LTV vinyl silicone rubber. J Nihon Univ Sch Dent. 1977;19(2):93-102.
- [28] Alexandropoulos A, Al Jabbari YS, Zinelis S, Eliades T. Chemical and mechanical characteristics of contemporary thermoplastic orthodontic materials. Aust Orthod J. 2015;31(2):165-70.
- [29] Bernard G, Rompré P, Tavares JR, Montpetit A. Colorimetric and spectrophotometric measurements of orthodontic thermoplastic aligners exposed to various staining sources and cleaning methods. Head Face Med. 2020;16(2):01-11.
- [30] Dentcareclearaligners.com. 2022. DentCare Aligners. [online] Available at: http:// www.dentcareclearaligners.com/ [Accessed 22 August 2022].
- [31] Clearbite Aligners. 2022. Clearbite Aligners. [online] Available at: http:// clearbitedental.com/ [Accessed 22 August 2022].
- [32] Smile aligners.inc.2022. smile aligners [online] Available at: https://smilealigners. in/aboutus [Accessed 22 August 2022].

PARTICULARS OF CONTRIBUTORS:

- 1. Postgraduate Student, Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India.
- 2. Professor, Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India.
- 3. Head, Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Sangeetha Duraisamy, Professor, Department of Orthodontics and Dentofacial Orthopaedics, SRM Dental College, Chennai, Tamil Nadu, India. E-mail: sangeetha.guhan@yahoo.com

AUTHOR DECLARATION:

- Financial or Other Competing Interests: None
- Was Ethics Committee Approval obtained for this study? Yes
- Was informed consent obtained from the subjects involved in the study? Yes
- For any images presented appropriate consent has been obtained from the subjects. No

• Plagiarism X-checker: Jul 27, 2022

- Manual Googling: Aug 25, 2022
- iThenticate Software: Aug 31, 2022 (9%)

Date of Submission: Jul 21, 2022 Date of Peer Review: Aug 22, 2022 Date of Acceptance: Sep 06, 2022 Date of Publishing: Oct 01, 2022

ETYMOLOGY: Author Origin